

Question Paper

B.Sc. Honours Examinations 2020

(Under CBCS Pattern)

Semester - I

Subject: PHYSICS

Paper : C 2-T & C 2-P

(Mechanics)

Full Marks : 60 (Theory-40 + Practical-20) Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

C 2 - T

Full Marks : 40

Answer any *two* questions :

 $2 \times 20 = 40$

1. (a) The magnitude of $\overrightarrow{r} \times \frac{\overrightarrow{dr}}{dt}$ is equal to twice the area swept out by the radious

vector in unit time. Prove it.

(b) A particle is moving in a straight line with simple harmonic motion. Its velocity has the values 5 ft/s and 4 ft/s, when its distances from the centre point of its motions are 2 ft and 3 ft respectively. Find the length of its path, the frequency of its oscillation, and the phase of its motion, when it is at a distance of 4 ft from the centre.

	(c)	A particle moves in a three dimensional space and at any time the particle is $P(x, y) = P(x, y)$
		located at $P(r, \theta, \phi)$ point. Prove that the
		(i) Velocity of the particle $\overrightarrow{V} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\sin\theta\dot{\phi}\hat{\phi}$ and
		(ii) Acceleration
		$\vec{a} = \left(\vec{r} - r\dot{\theta}^2 - r\dot{\theta}^2\sin^2\theta\right)\hat{r} + \left(2\dot{r}\dot{\theta} + r\ddot{\theta} - r\sin\theta\cos\theta\dot{\phi}^2\right)\hat{\phi} + \left(2\dot{r}\dot{\phi}\sin\theta + 2r\cos\theta\dot{\theta}\dot{\phi} + r\sin\theta\ddot{\phi}\right)\hat{\phi}$
		6+4+(4+6)
2.	(a)	Draw the schematic diagram of Michelson-Morley Experimental setup and define used apparatus. Write the basic principle and outcome of the experiment.
	(b)	Write the postulates of special theory of relativity and basic concept of non-inertial frame.
	(c)	Find an expression for the gravitational potential due to a thin spherical shell at a point outside the shell.
	(d)	Prove the parallel and perpendicular axes theorem on momentum of inertia 5+5+5+5
3.	(i)	Find the position of the centre of mass of a uniform semi circular disc.
	(ii)	Find the coriolis deflection of a bullet fired towards north at a velocity 400 m/s after 10 second of firing. The latitude of the gun-man is 45°N.
	(iii)	Show that the potential of central force is spherically symmetric.
	(iv)	Show for a system of particles : $\vec{N} = \frac{d\vec{L}}{dt}$ where \vec{N} is total external torque and
		\rightarrow L is total angular momentum. 5+5+5+5
4.	(a)	Write the Poiseuille's equation for flow of a liquid through a capillary tube.
	(b)	Show that the volume of Poisson's ratio, σ , can't be greater than 0.5.
	(c)	Show that the angular momentum of a particle moving under central force is conserved.
	(d)	Write the equation of simple harmonic motion in damping medium.
		What is Doppler Effect ?

Г

- (f) Write the Lorentz transformation of a moving particle with speed c/2; c is the velocity of light in vacuum.
- (g) If a vector \overrightarrow{A} of constant magnetude rotates with angular velocity \overrightarrow{W} , then show

that
$$\frac{\overrightarrow{dA}}{dt} = \overrightarrow{W} \times \overrightarrow{A}$$

Paper - C-2-P (Mechanics) (Practical)

Full Marks : 20

Answer any *one* question from the following :

 $1 \times 20 = 20$

2+3+3+3+2+3+4

- 1. Determine the acceleration due to gravity (g) using bar pendulum -
 - (a) Write down the working formula explaining each term and draw a schematic diagram.
 - (b) Briefly explain the process of data collection
 - (c) Draw the theoretical variation of time period (T) with the distance d of knife edges from one fixed end.
 - (d) Deduce the formula for maximum proportional error and comment.
- 2. Determine the elastic Constants of a wire by Searle's method
 - (a) Write down the working formula explaining each term
 - (b) Briefly explain the process of data collection
 - (c) Draw the theoretical graph for mass (m) versus elongation (l) and explain
 - (d) Deduce the formula for maximum proportional error
 - (e) Explain the main sources of error in this experiment

- 3. Determine the coefficient of viscosity of water by capillary flow method.
 - (a) Write down the working formula explaining each term
 - (b) Give the tables for measurement of each measurable parameter
 - (c) Briefly write the experimental procedure.
 - (d) Derive the formula of proportional error.